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A first high-dimensional dataset: COIL-20 (1996)

Columbia Object Image Library “COIL-20" (1996)

e Database size n = 20 objects x 72 poses = 1440
e Image resolution D = 128 pixels x 128 pixels = 16 384

Figure 1: Pictures from the COIL20 dataset. 1



Synthetic dataset: COIL-20 (1996)
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Figure 2: Low dimensional “representation” of the COIL20 dataset.



Synthetic dataset: COIL-20 (1996)
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Figure 2: Low dimensional “representation” of the COIL20 dataset.

Manifold hypothesis = High-dim. datasets lie close to low-dim. geometric structures.

— models local non-linear local correlations within the data;
< is a sparsity assumption independent of coordinate systems.
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e Database size n = 60000
e Image resolution D = 784

Less synthetic database :




Real database : ImageNet (2010)

e Database size n ~ 14 000 000
e Average image resolution D ~ 180000
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High-dimensional data actually is intrinsically low-dimensional
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Intrinsic dimension range over classes
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Figure 4: Boxplot of dimension estimates accross classes & dataset [Brown et al., 2023]



Dimension reduction
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Dimensionality reduction (DR) refers to the problem of embedding a point set into a

lower-dimensional space.



Manifold estimation
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Manifold estimation refers to the problem of estimating the underlying (curved)

low-dimensional space.



Multidimensional scaling
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Multidimensional scaling (MDS) is the term used in psychometry/psychology and
statistics to refer to the problem of embedding a weighted graph into a Euclidean

space.



lll-posedness of dimension reduction
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Figure 5: There exists no transformation of the sphere onto R? that fully preserves distances.
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Incredible variety of dimension re
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Figure 6: from Van Der Maaten, Postma, Herik, et al. 2009
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Figure 7: Visualizing complex simple / high-dimensional data in the plane.
(left) Toy 3D data (middle) Image data (right) Single-cell transcriptomics
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e Goals
e Understand geometric phenomena in high-dimensional data
e Get insights underlying the most common dimension reduction methods
e Practice dimension reduction on toy and real data
e Develop a critical approach to existing methods and design new ones
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e References
e Elements of dimensionality reduction and manifold learning. Ghojogh et al., 2023
e Introduction to high-dimensional statistics. Giraud, 2021

e Nonlinear dimensionality reduction. Lee, & Verleysen, 2007
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e Format

e 7 x 3h class (no class on January 14th!)
e Courses split between theory and practice

e Lectures (blackboard / slides)
e Hands-on sessions in Python (bring laptop!)
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e Hands-on sessions in Python (bring laptop!)
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e 15mn autonomous + 5mn questions
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Quentions?
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